期待値と分散
期待値
期待値とは、確率変数がどのくらいの値をとるのかを示す指標です。
離散型確率変数 \(X\) の確率質量関数を \(f(x)\) とする。 このとき、関数 \(g\) に対して
を \(g(X)\) の期待値という。
連続型確率変数 \(X\) の確率密度関数を \(f(x)\) とする。 このとき、関数 \(g\) に対して
を \(g(X)\) の期待値という。
特に \(E[X]\) は \(\mu\) とも書き、平均値といいます。
確率変数 \(X\) と \(a,b\in\mathbb{R}\) に対して、次が成り立つ。
証明
・\(X\) が離散型確率変数の場合
\(X\) の確率質量関数を \(f(x)\) とすると
・\(X\) が連続型確率変数の場合
\(X\) の確率密度関数を \(f(x)\) とすると
分散と標準偏差
確率変数 \(X\) に対して
を \(X\) の分散という。
また、分散の正の平方根 \(\sqrt{V[X]}\) を標準偏差という。
\(V[X]\) は \({\sigma}^2\) 、標準偏差は \(\sigma\) とも書かれます。
確率変数 \(X\) と \(a,b\in\mathbb{R}\) に対して、次が成り立つ。
- \(V[X]=E[X^2]-E[X]^2\)
- \(V[aX+b]=a^2V[X]\)
証明
-
\( \begin{align} V[X]&=E\left[(X-E[X])^2\right]\\ &=E[X^2-2E[X]X+E[X]^2]\\ &=E[X^2]-2E[X]\cdot E[X]+E[X]^2\\ &=E[X^2]-E[X]^2 \end{align} \)
-
\( \begin{align} V[aX+b]&=E[(aX+b)^2]-E[aX+b]^2\\ &=E[a^2X^2+2abX+b^2]-(aE[X]+b)^2\\ &=a^2E[X^2]+2abE[X]+b^2-a^2E[X]^2-2abE[X]-b^2\\ &=a^2E[X^2]-a^2E[X]^2\\ &=a^2(E[X^2]-E[X]^2)\\ &=a^2V[X] \end{align} \)